Evaluation of RDF Archiving strategies with
Spark

Meriem Laajimi®, Afef Bahri?, and Nadia Yacoubi Ayadi3

! High Institute of Management Tunis, Tunisia
laajimimeriem@yahoo.fr
2 MIRACL Laboratory, University of Sfax Tunisia
afef.bahri@gmail.com
3 RIADI Research Laboratory, ENSI, University of Manouba, 2010 Tunisia

nadia.yacoubi.ayadi@gmail.com

Abstract. Over the last decade, the published RDF data in the Web is
continuously evolving leading to an important number of RDF datasets
in the Linked Open Data (LOD). There is an emergent need for efficient
RDF data archiving systems. In fact, applications need to access to not
only the actual version of a dataset but equally to the previous ones in
order to query and track data over time. Querying RDF dataset archives
involves performance and scalability. The proposed RDF archiving sys-
tems or benchmarks are built on top of existing RDF query process-
ing engine. Nevertheless, efficiently processing a time-traversing query
over Big RDF data archives is more challenging than processing the
same query over an RDF datastore. We propose in this paper to use
a distributed system, namely Apache Spark, in order to evaluate RDF
archiving strategies. We propose and compare different query processing
approaches with a detailed experimentation.

Keywords: RDF archives - Versioning queries - SPARQL - SPARK -
SPARK SQL .

1 Introduction

The Linked Data paradigm promotes the use of the RDF model to publish struc-
tured data on the Web. As a result, several datasets have emerged incorporating
a huge number of RDF triples. The Linked Open Data cloud [3], as published
in 22 August 2017 illustrates the important number of published datasets and
their possible interconnections (1,184 datasets having 15,993 links). LODstats, a
project constantly monitoring statistics reports 2,973 RDF datasets that incor-
porate approximately 149 billion triples. As a consequence, an emerging interest
on what we call archiving of RDF datasets [13, 5, 8] has emerged raising several
challenges that need to be addressed. Moreover, the emergent need for efficient
web data archiving leads to recently developed Benchmarking RDF archiving
systems such as BEAR (BEnchmark of RDF ARchives) [5] and EvoGen [8]. The
authors of the BEAR system propose a theoretical formalization of an RDF

2 Meriem Laajimi, Afef Bahri, and Nadia Yacoubi Ayadi

archive and conceive a benchmark focusing on a set of general and abstract
queries with respect to the different categories of queries as defined before. More
recently, the EU H2020 HOBBIT! project is focusing the problem of Bench-
marking Big Linked Data. A new Benchmark SPBv was developed with some
preliminary experimental results [11]. Similar to EvoGen, SPBv proposes a con-
figurable and adaptive data and query load generator.

Obviously, the fast increasing size of RDF datasets raises the need to treat the
problem of RDF archiving as a Big data problem. Many efforts have been done
to process RDF linked data with existing Big data processing infrastructure like
Hadoop or Spark [9,12]. Nevertheless, no works has been realized for managing
RDF archives on top of cluster computing engine. The problem is more challeng-
ing here as Big data processing framework are not designed for RDF processing
nor for evolution management. Many versioning strategies have been proposed
in the literature: (a) Independent Copies (IC), (b) Change Based copies (CB) or
Deltas and (c¢) Timestamp-based approaches (TB) [13,5,10]. The first one is a
naive approach since it manages each version of a dataset as an isolated one. Ob-
viously, scalability problem is expected due to the large size of duplicated data
across dataset versions. The delta-based approach aims to resolve (partially) the
scalability problem by computing and storing the differences between versions.
While the use of deltas reduces space storage, the computation of full version
on-the-fly may cause overhead at query time. Using Big data processing frame-
work would give advantage to the Independent Copies/Temporal approaches as
CB approach may induce the computing of one or more versions on the fly.
Given the fact that we use IC approach and that all the versions are stored,
querying evolving RDF datasets data represents the most important challenge
beyond the use of RDF archiving system on top of Big data processing frame-
work. Many types of RDF archives queries have been proposed: version mate-
rialization, delta materialization, single version and cross version query types.
Which partitioning strategy would be adopted for treating theses queries. We
note that in case of version Materialization, as all the version need to be loaded,
the performance of the query processing does not depend on the used partition-
ing strategy. This is not the case of single/cross-time structured query where the
use of partitioning may improve query performance [2, 9, 1].

In this paper, we use the in-memory cluster computing framework SPARK for
managing and querying RDF data archive. The paper is organized as follows.
Section 2 presents existing approaches for the design and evaluation of RDF
archiving and versioning systems. Section 3 presents our approach for managing
and querying RDF dataset archives with SPARK. A mapping of SPARQL into
SPARK SQL and a discussion of the cost of versionning RDF queries are pre-
sented in section 4. Finally, an evaluation of RDF versioning queries is presented
in section 5.

! https://project-hobbit.eu/

Evaluation of RDF Archiving strategies with Spark 3

2 Related Works

Over the last decade, the published data is continuously growing leading to the
explosion of the data on the Web and the associated Linked Open Data (LOD)
in various domains. This evolution naturally happens without pre-defined policy
hence the need to track data changes and thus the requirement to build their
own infrastructures in order to preserve and query data over time. We note
that these RDF datasets are automatically populated by extracting information
from different resources (Web pages, databases, text documents) leading to an
unprecedented volume of RDF triples. Indeed, published data is continuously
evolving and it will be interesting to manage not only a current version of a
dataset but also previous ones.

Three versionning approaches are proposed in RDF archiving systems and cited
in literature as follows: (a) Independent Copies (IC), (b) Change Based copies
(CB) or Deltas and (c) Timestamp-based approaches (TB) [10, 5]. We talk about
hybrid approaches when the above techniques are combined [13]. The IC ap-
proach manages each version of a dataset as an isolated one while the CB ap-
proach stores only the changes that should be kept between versions also known
as delta. The advantage beyond the use of IC or CB approaches depends on
the ratio of changes occurring between consecutive versions. If only few changes
are kept, CB approach reduces space overhead compared to the IC one. Never-
theless, if frequent changes are made between consecutive versions, IC approach
becomes more storage-efficient than CB. Equally, the computation of full version
on-the-fly with CB approach may cause overhead at query time. To resolve this
issue, authors in [13] propose hybrid archiving policies to take advantage of both
the IC and CB approaches. In fact, a cost model is conceived to determine what
to materialize at a given time: a version or a delta.

Archiving systems not only need to store and provide access to different ver-
sions, but should also be able to provide query processing functionalities [13,
5,10]. Four query types are mainly discussed in the literature. We note version
materialization which is a basic query where a full version is retrieved. Delta ma-
terialization which is a type of query performed on two versions to detect changes
occurring at a given moment. Single-version and cross-version queries correspond
to queries, namely SPARQL, performed respectively on a single or different ver-
sions. The authors in [10] propose a taxonomy containing eight queries classified
according to their types (materialization, single version, cross version) and focus
(version or delta).

Moreover, the emergent need of efficient web data archiving leads to recently
developed Benchmarking RDF archiving systems such as BEAR (BEnchmark
of RDF ARchives) [5,6] EvoGen [8] and SPBv [11]. The authors of the BEAR
system propose a theoretical formalization of an RDF archive and conceive a
benchmark focusing on a set of general and abstract queries with respect to the
different categories of queries as defined before. More recently, the EU H2020
HOBBIT project is focusing on the problem of Benchmarking Big Linked Data.
In this context, EvoGen is proposed as a configurable and adaptive data and
query load generator. EvoGen extends the LUBM ontology and is configurable

4 Meriem Laajimi, Afef Bahri, and Nadia Yacoubi Ayadi

in terms of archiving strategies and the number of versions or changes. Recently,
new Benchmark SPBv was developed with some preliminary experimental re-
sults [11]. Similar to EvoGen, SPBv proposes a configurable and adaptive data
and query load generator.

Concerning Big RDF dataset archives, the use of a partitioning strategy depends
on the shape of the used SPARQL queries. Many works handles the Big RDF
data by a simple hash partitioning on their RDF subject [2, 9] which improves the
performance with star queries. For example, subject based partitioning strategy
seems to be more adapted for treating Star based query shape (s,p,0) as all the
triples for which the query is written are stored in the same node even though
they do not belong to the same version which may accurate the performance
of cross-version queries. For example, to follow the evolution of a given person
career over time, we need to ask a star shape query of the form (?x,hasJob, ?y)
on different versions.

Even though with simple query, the performance often drop significantly for
queries with large diameter. The authors in [12] propose a novel approach to
partition RDF data, named ExtVP (Extended Vertical Partitioning). In fact,
based on pre-evaluation of the data, many RDF triple patterns are used to par-
tition the data into partition tables (a partition for each triple pattern). That
is, a triple query pattern can be retrieved by only accessing the partition table
that bounds the query leading to a reduction of the execution time. The prob-
lem become more complex when we ask about cross-version join queries. For
example we may need to know if the diploma of a person 7x has any equivalence
in the RDF dataset archive: (?x hasDip ?y) on version V; and (?y hasEqui ?7z)
on versions Vja, ..., V,,. Realizing a partition on the subject for this kind of query
may engender many transfer between nodes.

3 RDF dataset archiving on Apache Spark

In this section, we present the main features of Apache SPARK cluster computing
framework we show how we can use it for change detection and RDF dataset
versioning.

3.1 Apache Spark

Apache Spark [15] is a main-memory extension of the MapReduce model for
parallel computing that brings improvements through the data-sharing abstrac-
tion called Resilient Distributed Dataset (RDD) [14] and Data frames offering a
subset of relational operators (project, join and filter) not supported in Hadoop.
Spark also offers two higher-level data accessing models, an API for graphs and
graph-parallel computation called GraphX [7] and Spark SQL, a Spark module
for processing semi-structured data.

SPARK SQL [4] is a Spark module that performs relational operations via a
DataFrame API offering users the advantage of relational processing, namely

Evaluation of RDF Archiving strategies with Spark 5

declarative queries and optimized storage. SPARK SQL supports relational pro-
cessing both on native RDDs or on external data sources using any of the pro-
gramming language supported by Spark, e.g, Java, Scala or Python [4]. SPARK
SQL can automatically infer their schema and data types from the language type
system.

3.2 RDF Dataset storage and change detection

SPARK SQL offers the users the possibility to extract data from heterogeneous
data sources and can automatically infer their schema and data types from the
language type system (e.g Scala, Java or Python). In our approach, we use
SPARK SQL for querying and managing the evolution of Big RDF dataset. An
RDF dataset stored in HDFS or as a table in Hive or any external database
system is mapped into a SPARK dataframes (equivalent to tables in a relational
database) with columns corresponding respectively to the subject, property, ob-
ject, named graph and eventually a tag of the corresponding version.

In order to obtain a view of a dataframe named “table”, for example, we execute
the following SPARK SQL query:

SELECT * FROM table

Figure 1 shows a view of a SPARK dataframe containing two versions of the
RDF dataset defined in the example used in the paper.

| IRI |Suhjecl |Fred|cale ‘ Object |Versiun

| gl | toto | hasJob ‘ analyst | v |
| g2 | mimi | hasJob ‘ develop V1 |
‘ gl toto hasJob dataSc

v2
g3 mimi | hasJob |deve|op| V2 |

Fig. 1. Example of a Dataframe with RDF dataset attributes.

When we want to materialize a given version, V; for example, the following

SPARK SQL query is used:
SELECT Subject,Object,Predicate FROM table WHERE version ="V’

In order to define delta between versions we define the following SQL SPARK
query:

SELECT Subject,Predicate,Object FROM table WHERE Version="V}’
MINUS
SELECT Subject,Predicate,Object FROM table WHERE Version="V;’

6 Meriem Laajimi, Afef Bahri, and Nadia Yacoubi Ayadi

3.3 RDF Dataset partitioning

In this section, we present the principle that we adopt for the partitioning of
RDF dataset archives for efficiently executing single version and cross-versions
queries (figure 2). Concerning version and delta materialization queries, all the

data (version or delta) will be loaded and no partition is needed.

First of all, we load RDF datasets in a N-triple format from HDFS as input.
— Then, a mapping is realized from RDF files into dataframes with correspond-

ing columns: subject, object, predicate and a tag of the version.
— We adopt a partitioning by RDF subject for each version.
— The SPARK SQL engine processes and the query result is returned.

Partition 1

Fig. 2. Query execution with data partition of single version and cross-version queries.

RDF
Datasets Input

(in HDFS)

Data
partitoning

Partition 2
7 -

L]
]

Exescute query
in parrallel

..

SPARK SQL
Engine

4 Querying RDF dataset archives with SPARK SQL

In this section, we define basic RDF archiving queries (version/delta material-

ization, single/cross version query) with SPARK SQL.

Evaluation of RDF Archiving strategies with Spark 7

4.1 Querying RDF dataset archives with SPARK SQL
Using SPARK SQL, we can define RDF dataset archiving queries as follows:

— Version materialization: Mat(V;).
SELECT Subject,Object,Predicate FROM table WHERE Version ='Vi’
— Delta materialization: Delta(V;,V}).

SELECT Subject,Predicate,Object FROM table WHERE Version="V7’

MINUS
SELECT Subject,Predicate,Object FROM table WHERE Version="Vj’
UNION
SELECT Subject,Predicate,Object FROM table WHERE Version="Vj’
MINUS

SELECT Subject,Predicate,Object FROM table WHERE Version="Vi’

— Single-version query: [[Q]]y;. We suppose here a simple query @ which
asks for all the subject in the RDF dataset.

SELECT Subject FROM table WHERE Version=Vi

— Cross-version structured query: Join(Q1,V;,Q2,V;). What we need
here is a join between the two query results. We define two dataframe table;
and table; containing respectively the version V; and Vj;. The cross-version
query is defined as follows:

SELECT * FROM df;
INNER JOIN df;
ON df;.Subject = df;.Subject

4.2 From SPARQL to SPARK SQL

SPARK SQL is used in [9, 12] for querying RDF big data where a query compiler
from SPARQL to SPARK SQL is provided. That is, a FILTER expression can be
mapped into a condition in Spark SQL while UNION, OFFSET, LIMIT, ORDER
BY and DISTINCT are mapped into their equivalent clauses in the SPARK
SQL syntax. Theses mapping rules are used without considering SPARQL query
shapes. SPARQL graph pattern can have different shapes which can influence
query performance. Depending on the position of variables in the triple patterns,
SPARQL graph pattern may be classified into three shapes:

1. Star pattern: this query pattern is commonly used in SPARQL. A star pat-
tern has diameter (longest path in a pattern) one and is characterized by a
subject-subject joins between triple patterns.

2. Chain pattern: this query pattern is characterized by object-subject (or
subject-object) joins. The diameter of this query corresponds to the number
of triple patterns.

8 Meriem Laajimi, Afef Bahri, and Nadia Yacoubi Ayadi

Star query pattern

?X hasDip 7Y
?X haslob ?Z

Chain query pattern

7% haslob ?Z
7Z hasSpec 2T

Snowflake query pattern

X hasDip 7Y
?X hasJob ?Z
7X collaborates ?X1
X1 hasDip Y1
?X1 hasJob ?Z1

Fig. 3. SPARQL graph pattern shapes.

3. Snowflake pattern: this query pattern results from the combination of many
star patterns connected by short paths.

When we query RDF dataset archives, we have to deal with SPARQL query
shapes only in single version and cross-version queries. We propose in the fol-
lowing a mapping from SPARQL to SPARK SQL based on query shapes:

— Star pattern: a Star SPARQL query with n triple patterns P; is mapped into
a SPARK SQL query with n-1 joins on the subject attribute. If we consider a
SPARQL query with two triple patterns P; and P» of the form (x;?,p1,%y1)
and (x17,p2,722), the dataframes df; and dfy corresponding respectively to
the query patterns P; and P, are defined with SPARK SQL as follows:

dfi= “SELECT Subject, Object FROM table
WHERE Predicate = ‘p;”’
dfa= “SELECT Subject, Object FROM table
WHERE Predicate = ‘py”’

For example, given a SPARQL query pattern (?X, hasDip ?Y, ?X hasJob
?7Z), we need to create two dataframes df; and dfs as follows:

dfi= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasDip”’
dfs= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasJob”’

We give in the following the obtained SPARK SQL query:

SELECT * FROM df;
INNER JOIN
dfs ON dfy.Subject = dfs.Subject

Evaluation of RDF Archiving strategies with Spark 9

— Chain pattern: a chain SPARQL query with n triple patterns ¢; is mapped
into a SPARK SQL query with n-1 joins object-subject (or subject-object):

join(join(join(join(dfy, df2), dfs), df4), ..., dfn)

If we consider a SPARQL query with two triple patterns P; and P, of the
form (x17,p1,721) and (z17,p2,?t2), the dataframes df; and dfs corresponding
respectively to the query patterns P; and P, are defined with SPARK SQL
as follows:

dfi= “SELECT Subject, Object FROM table
WHERE Predicate = ‘py”’
dfa= “SELECT Subject, Object FROM table
WHERE Predicate = ‘py”’

For example, given a SPARQL query with two triples (?X, hasJob ?Z, ?Z
hasSpec 7Z), we need to create a dataframe for each triple:

dfi= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasJob”’

dfs= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasSpec”’

The query result is obtained as a join between dataframes df; and dfs:

SELECT * FROM df;
INNER JOIN
dfs ON df;.0Object = dfs.Subject

— Snowflake pattern: the rewritten of snowflake queries follows the same prin-
ciple and may need more join operations depending equally on the number
of triples used in the query.

For single version query [[Q]]v;, we need to add a condition on the version for
which we want to execute the query). Nevertheless, the problem becomes more
complex for cross-version join query Join(Q1, Vi, Q2, V;) as other join operations
are needed between different versions of the dataset. Two cases may occur:

1. Cross-version query type;: this type of cross-version queries concerns the
case where we have one query @@ on two or more different versions. For
example, to follow the evolution of a given person career, we need to execute
(?x,hasJob,?z) on different versions. Given a query @ and n versions, we
denote T7,..., T3, the results obtained by executing ¢ on versions Vi,...,V,
respectively. The final result is obtained by realizing the union of the T;.
What we can conclude here is that the number of versions does not increase
the number of joins which only depends on the shape of the query. Given a
SPARQL query with a triple pattern P of the form (x17,p,?y1) defined on

10

5

Meriem Laajimi, Afef Bahri, and Nadia Yacoubi Ayadi

different versions V; and V,, the SPARK SQL query is defined as follows:

SELECT Subject, Object FROM table
WHERE Predicate = ‘p’ and Version = ‘Vy’
UNION

SELECT Subject, Object FROM table
WHERE Predicate = ‘p’ and Version = ‘Vy’

. Cross-version query types: the second case occurs when we have two or more

different queries Q1, Qo,...,Q0,, on many different versions. For example, we
may need to know if the diploma of a person 7z has any equivalence in RDF
dataset archive:

@1 :7x hasDip ?y on version V;
Q@2 :7y hasEqui 7z on versions Vs, ..., V,

Given a SPARQL patterns P; and P of the form (x17,p1,?21) and (21 7,p2,7t2)
defined on different versions V; and Vs, the dataframes df; and dfs corre-
sponding respectively to the query patterns P; and P, are defined with
SPARK SQL as follows:

dfi= “SELECT Subject, Object FROM table
WHERE Predicate = ‘p;’ and Version = 'V’
dfy= “SELECT Subject, Object FROM table
WHERE Predicate = ‘py’ Version = 'V’

The query result is obtained as a join between dataframes df; and dfs:

SELECT * FROM df;
INNER JOIN
dfs ON df,.Object = dfy.Subject

Given dfy,...,df,, the different dataframes obtained by executing Q1, Qo,...,Qn,
respectively, on versions V7,...,V,,, the final result is obtained with a combi-
nation of join and/or union operations between the df;. In the worst case we
may need to compute n-1 joins:

join(join(join(join(dfy, df2), dfs), df4), ..., dfr)

That is, for cross-version query types, the number of joins depends on the
shape of the query as well as the number of versions.

Experimental evaluation

Evaluation was performed in cloud environment ’Amazon Web services’ using
EMR (Elastic Map reduce) as a platform. The data input files were saved on S3
Amazon. The experiments were done in a cluster with three nodes (one master
and 2 core nodes) using m3.xlarge as an instance type. We use the BEAR dataset

Evaluation of RDF Archiving strategies with Spark 11

Versions | Triples |Added triples|Deleted triples
Version 1 (30,035,245 - -

Version 5 (27,377,065 6,922,375 9,598,805
version 10|28,910,781| 9,752,568 11,092,386
version 15|33,253,221| 14,110,358 11,150,069
version 20(35,161,469| 18,233,113 13,164,710
version 25|31,510,558| 16,901,310 15,493,857
version 30|44,025,238| 30,697,869 16,797,313
version 35|32,606,132| 19,210,291 16,645,753
version 40(32,923,367| 18,125,524 15,312,146

Table 1. RDF dataset description

Benchmark which monitors more than 650 different domains across time and
is composed of 58 snapshots. The description of the dataset is given in table
1. In the following we present the evaluation? of versioning queries on top of
SPARK framework. The evaluation concerns four query types: version and delta
materialization, single version and cross-version queries respectively.

5.1 Version and Delta Materialization

The content of the entire version (resp. Delta) is materialized. For each version,
the average execution time of the queries was computed. Based on the plots
shown in figure 4, we observe that the execution times obtained with IC strat-
egy are approximately constant and show better results compared to the ones
obtained with CB approach. In fact, versions in CB approach are not already
stored and need to be computed each time we want to query a given version
(resp. Delta).

== Independent Copies —#— Changs Based =pi= Independent Copies =#= Change Based

250000 500000

450000

200000 i ‘_/f\
350000 =

150000 300000 —

B @
c =
s - =
£ 2 250000
= 100000 £, 200000
& & 150000 M
50000 100000
L
50000
¥ o
o 5 10 15 20 F=1 30 35 40 45 0 5 10 15 20 25 0 35
Versions Versions
Version Materialization Delta Materialization

Fig. 4. Version and Delta Materialization IC and CB approaches

% https://github.com/meriemlaajimi/Archiving

40

12 Meriem Laajimi, Afef Bahri, and Nadia Yacoubi Ayadi

5.2 Single-version queries

We realize different experimentations with subject, predicate and object based
queries or a combination of them. Figure 5 concerns single version queries where
the object and/or predicate is given whereas the subject corresponds to what
we ask for. The analysis of the obtained plots shows that the use of partitioning
ameliorates the query execution times. Nevertheless, using query with individual
triple pattern does not need an important number of I/O operations. That is,
the real advantage beyond the use of partitioning is not highlighted for this kind
of queries which is not the case of cross-version queries.

== SPO without partitions =—#-— SPO with partitions == SP? Without partitions —®- SP? With partitions
10000 11000
9000 10000
8000 9000
., 7000 " 8000
E 6000 g 7000
e < 6000
2 5000 2
£ £ 5000
=, 4000 <
g 2 4000
2 3000 2
© & 3000
2000 2000
1000 1000
0 0
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 3 35 40 45
el Versions
== S?? Without partitions =#= S?? With partitions =% S?0 without partitions —#= S?0 with partitions
10000 10000
9000 9000
., 7000 ., 7000 M
E £ 6000
= 6000 c
2 5000 2 5000
£ 4000 . 4000
::; 2'3, 3000
2000 2000
1000 1000
0 [
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Versions Versions

Fig. 5. Single version queries (Subject)

5.3 Cross-version queries

In this section, we focus on Cross-version queries. The first series of tests are
realized with STAR query shape of the form (?X, p, ?Y) and (?X, q, 7Z). We give
on the following an example of query used for experimentations. The obtained
execution times are shown in table 3. We note that the advantage beyond the
use of partitioning is highlighted for this kind of queries compared to the result
obtained with single triple queries (subsection 5.2). As we can see in figure 6, the
use of partitioning ameliorates execution times. In fact, Star query invokes triple
patterns having the same subject value. When we use partitioning on subject

Evaluation of RDF Archiving strategies with Spark 13

attribute, theses triples patterns are loaded in the same partition and no transfer
is needed between nodes [9]. In our approach, RDF triple patterns belonging to
different versions and having the same subject are equally loaded in the same
partition.

Versions Triples SQ without parti-|SQ with partitions
tions (ms) (ms)

Vi and Vs 57,412,310 15005.226 12431.357

V5 and Vi 56,287,846 15808.009 13531.05

Vio and Vi5 (62,164,002 16482.251 13223.434

Vis and Voo [68,414,690 16563.959 14165.733

Voo and Vas 66,672,027 15839.788 14532.462

Vas and Vag |75,535,796 16158.124 15053.127

Table 2. Query time evaluation of Star query(SQ)

We equally realize a second series of tests using Chain queries with two triples
patterns of the form (?X, p, ?Y) and (?Y, q, ?Z). Table 3 shows the execution
times obtained with the Chain query. As we can equally see in figure 6, the use
of partitioning ameliorates execution times. We note that for executing Chain
queries, object-subject (or subject-object) joins are needed and data transfer be-
tween nodes is necessary for executing queries. In fact, as the partition is realized
on subject attribute, to realize the join between subject and object values we
need to transfer the triples having such an object value from other partitions.
After that, the execution times obtained with Chain query are superior to those
obtained with Star query shapes.

Versions Triples CQ without parti-|CQ with partitions
tions (ms) (ms)
Vi and Vs 57,412,310 15002.811 13630.838
Vs and Vig 56,287,846 16072.282 14029,593
Vio and Vis (62,164,002 16939.459 14395.548
Vis and Voo (68,414,690 17670.103 14247.463
Voo and Va5 166,672,027 16999.656 14681.513
Vas and Vag |75,535,796 19044.695 16257.424

Table 3. Runtime evaluation of Chain query (CQ)

What we can conclude is that, using partition with SPARK is favourable for ex-
ecuting cross-versions queries (Star queries). Nevertheless, Chain (or Snowflake)
queries need to be deeply addressed as the number of join between non parti-
tioned data may affect query execution times.

14 Meriem Laajimi, Afef Bahri, and Nadia Yacoubi Ayadi

== Star Query without partitions =@ Star query with partitions =>&= Chain Query without partitions =@ Chain Query with partitions
18000 20000
16000 /)1_“___,“ 18000
14000 /“v/‘o——’"" 16000 .’_—.’__.*'/_/
2 12000 2 14000
£ 10000 £ 12000
g g 10000
8000 . 8000
el =l
@ 6000 @
3 = 6000
S 4000 <
4000
2000 2000
0 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Versions Versions

Fig. 6. Cross-version queries: Star and Chain query shapes

6 Conclusion

In this paper, we propose an evaluation of main versioning queries on top of
SPARK framework using scala. Different performance tests have been realized
based on: versioning approaches (Change Based or Independent Copies ap-
proaches), the types of RDF archives queries, the size of versions, the shape
of SPARQL queries and finally the data partitioning strategy. What we can
conclude is that, using partitioning on the subject attribute with SPARK is
favourable for executing cross-version Star queries as the execution of this query
type does not need transfer between nodes which is not the case of cross-version
Chain queries.

We note that, the number of patterns used in the Chain query as well as the
number of versions have an implication on the number of join operations used to
execute the query and by the way the number of data transfers. Different issues
need to be considered, namely, which partitioning strategy will be adapted for
efficiently executing cross-version Chain queries. In the future works we project
to use different partitioning strategies [12] and to define execution plan of join
operations [9] by taking into consideration, the size of a version, the number of
versions and the shape of used queries.

References

1. Abdelaziz, 1., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental com-
parison of distributed SPARQL engines for very large RDF data. PVLDB 10(13),
2049-2060 (2017)

2. Ahn, J., Im, D., Eom, J., Zong, N., Kim, H.: G-diff: A grouping algorithm for RDF
change detection on mapreduce. In: Semantic Technology - 4th Joint International
Conference, JIST, Chiang Mai, Thailand, November 9-11, Revised Selected Papers.
pp- 230-235 (2014)

10.

11.

12.

13.

14.

15.

Evaluation of RDF Archiving strategies with Spark 15

Andrejs Abele, John P. McCrae, P.B.A.J., Cyganiak, R.: Linking Open Data cloud
diagram 2018. http://lod-cloud.net// (2018), [Online; accessed April-2018]
Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark SQL: relational data
processing in spark. In: Proceedings of the SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May 31 - June 4. pp. 1383—
1394 (2015)

Fernéndez, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating query and stor-
age strategies for rdf archives. In: Proceedings of the 12th International Conference
on Semantic Systems. pp. 41-48. ACM, New York, NY, USA (2016)

Fernéndez, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating query and stor-
age strategies for rdf archives. Semantic web journal IOS Press (2017)

Graube, M., Hensel, S., Urbas, L.: R43ples: Revisions for triples - an approach
for version control in the semantic web. In: Proceedings of the 1st Workshop on
Linked Data Quality co-located with 10th International Conference on Semantic
Systems, Leipzig, Germany, September 2nd (2014)

Meimaris, M., Papastefanatos, G.: The evogen benchmark suite for evolving rdf
data. In: MEPDaW Workshop, Extended Semantic Web Conference (2016)
Naacke, H., Curé, O., Amann, B.: SPARQL query processing with apache spark.
CoRR (2016)

Papakonstantinou, V., Flouris, G., Fundulaki, I., Stefanidis, K., Roussakis, G.:
Versioning for linked data: Archiving systems and benchmarks. In: Proceedings of
the Workshop on Benchmarking Linked Data, Kobe, Japan, October 18 (2016)
Papakonstantinou, V., Flouris, G., Fundulaki, I., Stefanidis, K., Roussakis, Y.:
Spbv: Benchmarking linked data archiving systems. In: 2nd International Work-
shop on Benchmarking Linked Data, ISWC

Schétzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on spark. PVLDB 9(10), 804-815 (2016)

Stefanidis, K., Chrysakis, I., Flouris, G.: On Designing Archiving Policies for Evolv-
ing RDF Datasets on the Web, pp. 43-56 (2014)

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, San Jose, CA,
USA, April 25-27. pp. 15-28 (2012)

Zaharia, M., Xin, R.S.; Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM
59(11), 56-65 (2016)

